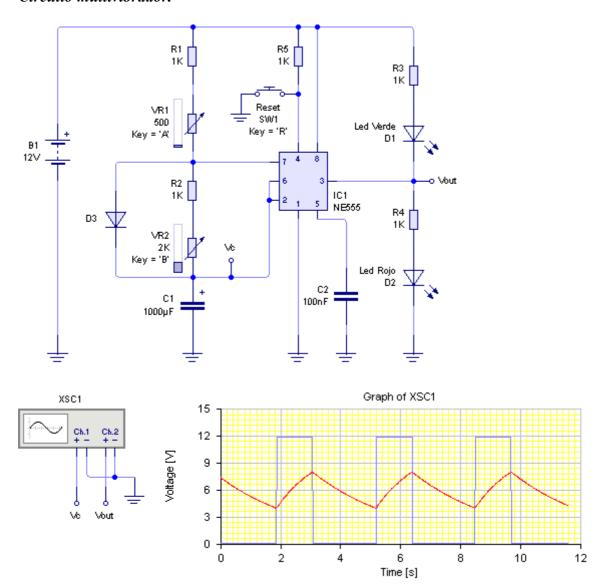


FUNCIONAMIENTO COMO ASTABLE

CI 555


GENERADOR ONDA CUADRADA (4)
ELECTRÓNICA

Departamento de Electricidad Juan Pablo Lázaro

Circuito con un integrado 555 funcionando como aestable.

En electrónica, un astable es un multivibrador que no tiene ningún estado estable, lo que significa que posee dos estados "quasi-estables" entre los que conmuta, permaneciendo en cada uno de ellos un tiempo determinado. La frecuencia de conmutación depende, en general, de la carga y descarga de condensadores.

Circuito multivibrador.

Funcionamiento del circuito:

El condensador C1 está permanentemente cargándose y descargándose. Cuando se carga lo hace a través de R1 y VR1 mientras que cuando se descarga lo hace a través de R2 y VR2. Esta particularidad se consigue gracias al diodo D3 conectado en paralelo con R2 y VR2.

Los tiempos T1 y T2 se pueden ajustar gracias a las resistencias ajustables VR1 y VR2.

CI 555

FUNCIONAMIENTO COMO ASTABLE GENERADOR ONDA CUADRADA (4) ELECTRÓNICA

Departamento de Electricidad Juan Pablo Lázaro

El condensador se carga hasta los 2/3 de la tensión de alimentación(Vcc). Llegados a este punto el condensador comienza a descargarse hasta 1/3 de la tensión de alimentación(Vcc). El proceso se repite permanentemente mientras el circuito esté alimentado.

Cuando el condensador se está cargando la salida del CI 555 está a nivel alto(12V) y el diodo led rojo se ilumina.

Cuando el condensador se está descargando la salida del CI 555 está a nivel bajo(0V) y el diodo led verde se ilumina.

El pulsador de reset está conectado al pin 4 del CI 555 que es activo a nivel bajo. Cuando el pulsador se pulsa, al pin 4 le llega una tensión de 0V, con lo cual la salida del CI 555 se pone a cero. Mientras se mantiene pulsado el pulsador la salida es 0V. Cuando el pulsador deja de pulsarse el circuito vuelve a funcionar con normalidad.

• El tiempo que está a nivel alto(12V) se puede calcular con la siguiente fórmula:

 $T_1 = (0,7/1000)*R_T*C_T$

Donde:

 $T_1 = Tiempo \ a \ nivel \ alto \ (seg)$

 $R_T = Resistencia de carga (K\Omega)$

 $C_T = Condensador (\mu F)$

• El tiempo que está a nivel bajo(0V) se puede calcular con la siguiente fórmula:

 $T_2 = (0,7/1000)*R_T*C_T$

Donde:

 $T_2 = Tiempo \ a \ nivel \ bajo \ (seg)$

 $R_T = Resistencia de descarga (K\Omega)$

 $C_T = Condensador (\mu F)$

NOTA: En este circuito la salida puede ser simétrica o asimétrica. Podemos conseguir:

- a) Que T1 sea igual que T2.
- b) Que T1 sea mayor que T2.
- c) Que T1 sea menor que T2.

CI 555

FUNCIONAMIENTO COMO ASTABLE GENERADOR ONDA CUADRADA (4) ELECTRÓNICA

Departamento de Electricidad Juan Pablo Lázaro

Ejemplo:

$$RI=IK$$
 $VR1 = 10K$
 $R2=IK$ $VR2 = 10K$
 $C=1000\mu F$

Con las resistencias ajustables ajustadas al mínimo (0Ω) , los tiempos mínimos son:

$$T_1 = (0,7/1000)*R_T*C_T = (0,7/1000)*1K*1000\mu F = 0,7 seg.$$

 $T_2 = (0,7/1000)*R_T*C_T = (0,7/1000)*1K*1000\mu F = 0,7 seg.$

$$T = T_1 + T_2 = 0.7 + 0.7 = 1.4$$
 seg.
 $F = 1 / T = 1 / 1.4 = 0.71$ Hz.

Con las resistencias ajustables ajustadas al máximo(10K), los tiempos máximos son:

$$T_1 = (0.7/1000) *R_T *C_T = (0.7/1000) *11K *1000 \mu F = 7.7 seg.$$

 $T_2 = (0.7/1000) *R_T *C_T = (0.7/1000) *11K *1000 \mu F = 7.7 seg.$

$$T = T_1 + T_2 = 7,7 + 7,7 = 15,4$$
 seg. $F = 1/T = 1/15,4 = 0,065$ Hz.

Actividad 1:Ejercicios de cálculo

Calcular los tiempos T_1 y T_2 así como el período y la frecuencia de salida del circuito en los siguientes casos:

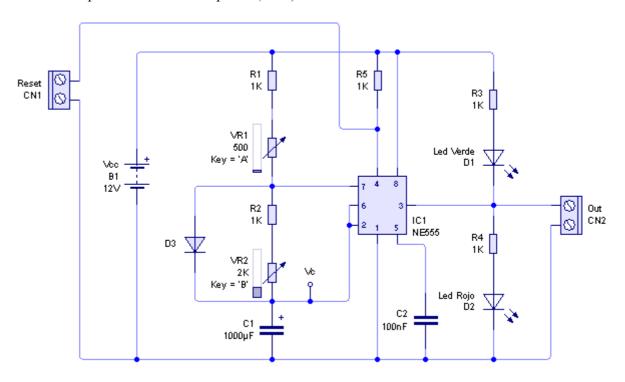
- a) VR1 ajustada al mínimo y VR2 ajustada al máximo.
- b) VR1 ajustada al máximo y VR2 ajustada al mínimo.

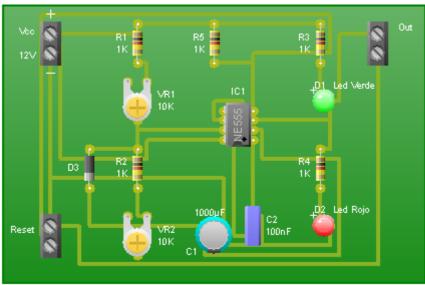
Soluciones:

a)
$$T_1 = 0.7 \text{ seg. } T_2 = 7.7 \text{ seg. } T = 8.4 \text{ seg. } F = 0.12 \text{ Hz.}$$

b)
$$T_1 = 7.7 \text{ seg. } T_2 = 0.7 \text{ seg. } T = 8.4 \text{ seg. } F = 0.12 \text{ Hz.}$$

Actividad 2: Práctica simulación ordenador


Simular el circuito en el ordenador y comprobar su funcionamiento.



CI 555 FUNCIONAMIENTO COMO ASTABLE GENERADOR ONDA CUADRADA (4) ELECTRÓNICA

Departamento de Electricidad Juan Pablo Lázaro

Actividad 3: Práctica ordenador. Diseño PCB del circuito
Obtener la placa de circuito impreso (PCB) del circuito multivibrador.

CI 555

FUNCIONAMIENTO COMO ASTABLE GENERADOR ONDA CUADRADA (4) ELECTRÓNICA

Departamento de Electricidad Juan Pablo Lázaro

Actividad 4: Práctica montaje circuito

Montar el circuito y comprobar su funcionamiento.

R1 = 1K VR1 = 10K

R2 = 1K VR2 = 10K

 $C = 1000 \ \mu F$

Nota:

Todas las conexiones a la tensión de alimentación positiva(Vcc) han de ser de color rojo.

Todas las conexiones a la tensión de alimentación negativa(masa) han de ser de color negro.

El resto de otro color.